英语听力汇总   |   演讲MP3+双语文稿:为什么“生物制造”是下一次工业革命

https://online2.tingclass.net/lesson/shi0529/10000/10387/tedyp340.mp3

更新日期:2022-01-19浏览次数:0次所属教程:TED音频

-字号+

听力原文

听力课堂TED音频栏目主要包括TED演讲的音频MP3及中英双语文稿,供各位英语爱好者学习使用。本文主要内容为演讲MP3+双语文稿:为什么“生物制造”是下一次工业革命,希望你会喜欢!

【演讲者及介绍】Suzanne Lee

苏珊娜·李是一位由时装设计师转型的生物制造先驱,她正在培育一个由不断发展材料的创新者组成的全球社区。

【演讲主题】为什么“生物制造”是下一次工业革命 Why "biofabrication" is the next industrial revolution.

【中英文字幕】

翻译者 Wanting Zhong 校对者 psjmz mz

00:01

I started life as a fashion designer, working closely with textile designers and fabric suppliers. But today, I can no longer see or talk to my new collaborators, because they're in the soil beneath our feet, on the shelves of our supermarkets and in the beer I'm going to drink when I finish this talk. I'm talking about microbes and designing with life.

刚开始我是一名时尚设计师, 和纺织品设计师与 面料供应商密切合作。 但今天,我已看不见我的 新晋合作伙伴,也没法与它们对话, 因为它们在脚下的泥土里, 在超市的货架上, 以及这次演讲后 我将畅饮的啤酒里。 我指的是微生物, 以及用生物进行设计。

00:31

Fifteen years ago, I completely changed both what I worked with and how I worked after a revelatory collaboration with a biologist. Our project gave me a different perspective on life, introducing a whole new world of possibility around how we can design and make things. I discovered a radical manufacturing proposition: biofabrication. Literally, fabricating with biology.

十五年前, 在和一位生物学家 启发式的合作后, 我彻底改变了工作的对象 以及工作的方式。 我们的项目给了我 看待生命的不同视角, 围绕我们如何 设计与制造物品 打开了充满可能性 的全新世界。 我发现了一种 变革式的制造理念: 生物制造。 如字面意义,用生物学制造。

01:05

What does that mean? Well, instead of processing plants, animals or oil to make consumer materials, we might grow materials directly with living organisms. In what many are terming "the Fourth Industrial Revolution," we're thinking about the new factories as being living cells. Bacteria, algae, fungi, yeast: our latest design tools include those of biotechnology.

这是什么意思? 不通过加工植物、 动物或原油 获得消费品材料, 而是直接用生物体 培养材料。 在很多人称为“第四次 工业革命”的进程中, 我们在考虑将活细胞 作为新的工厂。 细菌、藻类、真菌、酵母: 我们最新的设计工具 包括了生物科技。

01:39

My own journey in biofabrication started with a project called "Biocouture." The provocation was that instead of growing a plant, like cotton, in a field over several months, we could use microbes to grow a similar cellulose material in a lab in a few days. Using a certain species of bacteria in a nutrient-rich liquid, we fermented threads of cellulose that self-organized into a sheet of fabric. I dried the fabric I had grown and cut and sewed it into a range of garments, shoes and bags. In other words, in one lab we grew materials and turned them into a range of products in a matter of days. And this is in contrast to currents methods of fabric production, where a plant is grown, just the cotton part is harvested, processed into a yarn, woven into a fabric and then potentially shipped across oceans before being cut and sewn into a garment. All of that can take months.

我自己的生物制造旅程 是由一个名为“Biocouture” (生物服装)的项目开始的。 其发想在于,并不是 花费几个月时间 在地里栽培作物,比如棉花; 而是只用几天时间, 在实验室里用微生物 培养出类似的纤维材料。 在营养丰富的培养液里 用一特定种类的细菌, 我们将纤维素的线发酵, 它们自行编组 形成了一张布料。 我晾干自己培养的布料后, 把它剪开,缝制成了 各种衣物、鞋子和手袋。 换句话说, 在实验室里, 我们培养材料并把它们 转换成一系列产品 只需要几天时间。 与之对比鲜明的是 当今的织物生产工艺: 种植作物, 仅收获棉花部分, 处理制成纱线, 纺织成面料, 可能被海运至各地, 再裁剪、缝制成衣物。 所有这些工序可能会 花上好几个月的时间。

02:52

So these prototypes indicated a field offering significant resource efficiencies. From reducing the water, energy and chemistry needed in the production of a material, through to generating zero waste, we grew fabrics to finished form -- if you like, "biological additive manufacture."

因此,生物制造的原型显示了 这个领域能显著提升资源效率。 从减少生产材料的工序 所需的水、能源和化学品, 到实现零废料, 我们培养织物,使其生成成品—— 如果想的话,可以称之为 “生物添加制造”。

03:17

Through biofabrication, I had replaced many intensive man-made steps with one biological step. And as I engaged with this living system, it transformed my design thinking. Here was biology, with no intervention from me other than designing initial conditions for growth, efficiently producing a useful, sustainable material.

通过生物制造, 我可以用一个生物工序步骤 取代许多步高强度的人工工艺。 当我开始使用这个生物系统, 它便转变了我的设计理念。 这就是生物学, 除了设计培养的初始条件, 不需我多加干预, 就能高效地生产有用的、 可持续的材料。

03:46

So now I can't help but see all materials through the lens of biofabrication. In fact, there's a growing global community of innovators rethinking materials with biology. Multiple companies are now growing mushroom materials, but not literally mushrooms -- using mycelium, which is the root system of fungi, to bind together agricultural byproducts. It's a process that's been described as "nature's glue." A common way to do this is to take a 3-D mold, fill it with a waste crop like corn stalks or hemp, add water, wait a few days for the mycelium to grow throughout, remove the mold, and you're left with a grown 3-D form.

现在,我无法不透过生物制造 的镜片去审视所有材料。 事实上,已经有一个日益壮大 的全球性革新者团体, 正在用生物学重新思考材料。 若干公司现在正在培养蘑菇材料, 并不是字面意义的蘑菇—— 而是使用菌类的根系统,菌丝体, 将农业副产品结合在一起。 这个过程被称为“自然胶水”。 常见做法是在三维模具中 填满玉米杆或亚麻籽 之类的废弃作物, 加上水, 等几天让菌丝体充分生长, 移除模具, 就得到了长成的三维形体。

04:44

Incredibly, we can grow all kinds of structures using living organisms, from foams that can replace plastics in footwear, to leather-like materials without animals. Furniture, flooring -- all are currently being prototyped. Fungi are able to grow materials that are naturally fire retardant, without any chemicals. They're naturally hydrophobic, meaning they won't absorb water. They have higher melt temperatures than plastics. Polystyrene can take thousands of years to degrade. Mushroom packaging materials can be naturally composted in your back garden in as little as 30 days. Living organisms are transforming waste into cost-competitive, performance-matching materials that can start to replace plastics and other CO2-emitting materials.

不可思议的是,我们可以用生物体 培养各式各样的结构, 从可以取代鞋履中塑料的泡沫, 到不需要动物的类皮革材料。 家具、地板—— 这些都在试制过程中。 真菌可以生成 天然耐火材料, 不需要化学添加剂。 它们天生就具疏水性, 意思是它们不会吸收水分。 它们比塑料的熔点要高。 聚苯乙烯要花费数千年才能降解。 蘑菇制包装材料 只需 30 天 就能在你的后花园里 变成天然堆肥。 生物体正在将废弃物 转换成成本低廉、性能相当的材料, 可以开始取代塑料 和其他排放二氧化碳的材料。

05:46

And once we start growing materials with living organisms, it starts to make previous methods of manufacture seem illogical. Take the humble house brick. The cement industry generates around eight percent of global CO2 emissions. That's more than all the planes and ships each year. The cement process requires materials to be fired in a kiln at over 2,000 degrees Fahrenheit. Compare this to bioMASON. They use a soil microbe to transform loose aggregates, like sand or crushed stone, into a biofabricated, or biocement, brick. Their process happens at room temperature, in just a couple of days. Think: hydroponics for bricks. An irrigation system feeds nutrient-rich water to trays of bricks that have been inoculated with bacteria. The bacteria produce crystals that form around each grain of sand, locking together all the loose particles to form a solid brick. We can now grow construction materials in the elegant way nature does, just like a coral reef. And these biofabricated bricks are nearly three times stronger than a concrete block. And in stark contrast to traditional cement production, they store more carbon than they make. So if we could replace the 1.2 trillion fired bricks that are made each year with biofabricated bricks, we could reduce CO2 emissions by 800 million tons every year.

而当我们开始用生物培养材料后, 它便开始让先前的制造工艺 显得不合逻辑。 比方说平凡的砖块。 全球 8% 的二氧化碳排放 是由水泥行业产生的。 这比每年飞机和轮船排放得都多。 加工水泥需要在水泥窑里烧制材料, 达到 1100 摄氏度以上的高温。 与之相比的是 bioMASON (生物泥瓦匠)。 他们使用一种土壤微生物, 将砂砾或碎石之类的碎颗粒 转换成生物制造的砖头, 又称生物水泥砖。 这个反应过程在室温进行, 只需要几天时间。 想象一下:水培法制砖。 一个灌溉系统把富含营养的水 喂给接种了细菌的 一盘盘砖。 细菌产生晶体 包裹住每一粒沙, 将这些碎颗粒紧紧锁住, 形成一块结实的砖。 我们现在能像自然那样优雅地 培养建筑材料, 就像珊瑚礁一样。 这些生物制造的砖块 比混凝土砖 坚固近三倍。 而与传统水泥工艺 对比鲜明的是, 它们贮存的碳比产生的碳还多。 如果我们能用生物制造的砖头 取代每年烧制的 1.2 万亿块炉砖, 那么我们每年就能减少 8 亿吨二氧化碳排放。

07:48

(Applause)

(掌声)

07:56

Beyond growing materials with living organisms, we're even starting to design products that encourage their growth. And this comes from the realization that the very thing we've been trying to marginalize -- life -- might actually be our greatest collaborator. To that end, we've been exploring all the ways that we can grow healthy microbes in our own ecosystems. A great example of this is architects who are imagining the skin of a building to function like the bark of a tree. But not as a cosmetic green layer. They're designing architectural barks as hosts for evolving ecologies. These surface structures are designed to invite life in. And if we applied the same energy we currently do suppressing forms of life towards cultivating life, we'd turn the negative image of the urban jungle into one that literally embodies a thriving, living ecosystem. By actively encouraging surface interactions with healthy microbes, we could improve passive climate control, stormwater management and even reduce CO2 emissions by lowering the energy used to heat or cool our buildings.

除了用生物培养材料, 我们甚至开始设计 鼓励它们生长的产品。 这是由于意识到了 我们试图边缘化的事物,即生物, 恰恰可能是我们最有力的合作者。 为此,我们在探索 能在我们自己的生态系统中 培养健康微生物的各种办法。 一个很好的例子是,建筑师们 在设想让建筑的表皮 像树皮一样运作。 但并不是作为美观的绿化层。 他们在设计建筑用树皮 作为演变生态的宿主。 这些表层结构的设计 欢迎生物入住。 如果我们将现在用于 抑制生物的能量 用在培育生命上, 我们就能把都市森林的负面形象 转换成承载了生机盎然 的生态系统的图景。 通过积极地鼓励与健康微生物 在表层的互动, 我们可以改善被动气候调控, 雨水管理, 甚至能通过减少为 建筑物制冷或制热的能源, 降低二氧化碳排放。

09:30

We're just beginning to realize the potential of nature-based technologies. I'm excited that we're starting to design and biofabricate a new material world.

我们才刚刚开始意识到 基于自然的科技的潜力。 我们正开始设计并用生物制造 一个崭新的材料世界, 对此我感到十分激动。

09:49

It's one that moves away from the exploitation of nonrenewable resources to working with the original, renewable life. Instead of designing out life, we're designing with it and for it. Packaging, fashion, footwear, furniture, construction -- biofabricated products can be grown close to centers of demand, with local resources, less land, energy, and even harnessing industrial waste streams.

这种科技远离 对不可再生资源的滥用, 转而与原始的、可再生的生命合作。 我们不是将生物排除于设计外, 而是与生物一起设计, 为生物进行设计。 包装、时尚、鞋履、家具、建筑—— 生物制造的产品可以在 接近需求中心的地方进行培养, 使用当地资源,占地与耗能更少, 甚至能利用工业废料流。

10:24

It used to be that the tools of biotechnology were the preserve of powerful, multinational chemical and biotech companies. In the last century, we expected material innovation to come from the likes of DuPont, Dow, BASF. But this 21st-century material revolution is being led by start-ups with small teams and limited capital. And by the way, not all their founders have science degrees. They include artists, architects and designers. Over a billion dollars has already been invested in start-ups biofabricating consumer products.

曾经,生物科技的工具 只是强大的跨国化学与 生物科技公司 的专属品。 在上个世纪, 我们期待的是 由陶氏杜邦、陶氏化学、 巴斯夫集团带来的材料革新。 但这次 21 世纪的材料革命, 其发起者是 团队小、资金有限的创业公司。 顺便提一下,它们的创始人 并不全是理科出身。 其中包括了艺术家、 建筑师、设计师。 生物制造消费者产品 的创业公司已经吸纳了 超过十亿美元的投资。

11:13

I don't think we have a choice but to biofabricate our future. From the jacket you're wearing to the chair you're sitting in to the home you live in, your designed material world shouldn't compromise your health or that of our planet. If materials can't be recycled or naturally composted at home, we should reject them.

我觉得,我们没有比生物制造 的未来更好的选择。 从你穿着的夹克, 到你坐着的椅子, 到你居住的房屋, 设计出的材料世界 不应损害你的健康, 或者地球的健康。 如果材料无法回收利用 或在家里自然降解, 我们应当拒绝它们。

11:37

I'm committed to making this future a reality by shining a light on all the amazing work being done today and by facilitating more interactions between designers, scientists, investors and brands. Because we need a material revolution, and we need it now.

我将致力于实现这样的未来, 为此我会关注今天正在进行的 所有令人叹服的工作, 并促进设计师、科学家、 投资者与品牌 之间的更多互动。 因为我们需要一次材料革命, 就在当下。

12:00

Thank you.

谢谢。

12:02

(Applause)

(掌声)