| Radial Basis Function/RBF | 径向基函数 | 
	
	| Random Forest Algorithm | 随机森林算法 | 
	
	| Random walk | 随机漫步 | 
	
	| Recall | 查全率/召回率 | 
	
	| Receiver Operating Characteristic/ROC | 受试者工作特征 | 
	
	| Rectified Linear Unit/ReLU | 线性修正单元 | 
	
	| Recurrent Neural Network | 循环神经网络 | 
	
	| Recursive neural network | 递归神经网络 | 
	
	| Reference model | 参考模型 | 
	
	| Regression | 回归 | 
	
	| Regularization | 正则化 | 
	
	| Regularizer | 正则化项 | 
	
	| Reinforcement learning/RL | 强化学习 | 
	
	| Relative entropy | 相对熵 | 
	
	| Reparametrization | 重参数化 | 
	
	| Representation learning | 表征学习 | 
	
	| Representer theorem | 表示定理 | 
	
	| Reproducing Kernel Hilbert Space/RKHS | 再生核希尔伯特空间 | 
	
	| Re-sampling | 重采样法 | 
	
	| Rescaling | 再缩放 | 
	
	| Reservoir computing | 储层计算 | 
	
	| Residual Mapping | 残差映射 | 
	
	| Residual Network | 残差网络 | 
	
	| Restricted Boltzmann Machine/RBM | 受限玻尔兹曼机 | 
	
	| Restricted Isometry Property/RIP | 限定等距性 | 
	
	| Reverse mode accumulation | 反向模式累加 | 
	
	| Re-weighting | 重赋权法 | 
	
	| Ridge regression | 岭回归 | 
	
	| Robustness | 稳健性/鲁棒性 | 
	
	| Root node | 根结点 | 
	
	| Rule Engine | 规则引擎 | 
	
	| Rule learning | 规则学习 |